OBJECTIVE Type Questions

[**1** mark]

Multiple Choice Questions

- 1. If $x^2 + kx + 6 = (x + 2)(x + 3)$ for all x, then the value of k is:
 - (a) 1
- (b) -1
- (c) 5
- (d) 3

[NCERT Exemplar]

Ans. (c) 5

Explanation:

Given equation is $x^2 + kx + 6 = (x + 2)(x + 3)$

On simplifuing,

$$x^{2} + kx + 6 = (x + 2)(x + 3)$$

 $x^{2} + kx + 6 = x^{2} + 3x + 2x + 6$
 $x^{2} + kx + 6 = x^{2} + 5x + 6$

On comparing, we get

$$kx = 5x$$

 $k = 5$

Therefore, the value of k is 5.

- *2. The remainder if $x^4 + 8x + 5$ is divided by x + 4 is:
 - (a) 229
- (b) 134
- (c) -229
- (d) -234

[Diksha]

Ans. (a) 229

Explanation: When we divide $x^4 + 8x + 5$ by x + 4, we get

- *3. Using remainder theorem, find the remainder when $x^4 + 8x + 5$ is divided by x + 4.
 - (a) 229
- (b) 134
- (c) -229
- (d) -234

Ans. (a) 229

Explanation:

Let given polynomials be:

$$p(x) = x^4 + 8x + 5...(i)$$

$$g(x) = x + 4$$

For finding the zero of g(x), put g(x) = 0

$$x + 4 = 0$$

$$\rightarrow$$

$$x = -4$$

So, it is the zero of g(x).

^{*} Topics and Questions which are a part of latest CBSE Syllabus but have been removed by NCERT.

On putting x = -4 in equation (i), we get

$$p(-4) = (-4)^4 + 8(-4) + 5$$
$$= 256 - 32 + 5$$
$$= 229$$

Hence, the value of p(-4) is 229, which is the required remainder obtained by dividing $x^4 + 8x + 5$ by x + 4.

4. Which of the following option is a zero of the polynomial $3x^2 + 11x + 8$?

- (c) -3
- (d) -2

[Diksha]

Ans. (a) $-\frac{8}{3}$

Explanation: Let $p(x) = 3x^2 + 11x + 8$

A real number 'a' is a zero of a polynomial p(x)if p(a) = 0

Evaluate $P\left(-\frac{8}{3}\right)$

$$P\left(-\frac{8}{3}\right) = 3\left(-\frac{8}{3}\right)^2 + 11\left(-\frac{8}{3}\right) + 8$$
$$= 3\left(\frac{64}{9}\right) - \frac{88}{3} + 8$$
$$= \frac{64}{3} - \frac{88}{3} + 8$$
$$= -\frac{24}{3} + 8 = -8 + 8$$
$$= 0$$

Therefore, $-\frac{8}{3}$ is a zero of polynomial

$$3x^2 + 11x + 8$$

- 5. Which of the following options gives the correct value of the polynomial $x^3 - 10x^2 + 3x - 4$ at x = -1?
 - (a) -18
- (b) 10 (d) 2
- (c) 4

[Diksha]

Ans. (a) -18

Explanation: Let $p(x) = x^3 - 10x^2 + 3x - 4$

Now.

at
$$x = -1$$

 $p(-1) = (-1)^3 - 10(-1)^2 + 3(-1) - 4$
 $= -1 - 10 - 3 - 4$
 $= -18$

Hence, at x = -1, the polynomial $x^3 - 10x^2 + 3x - 4$ gives -18 as the correct value.

6. The value of $x^3 + y^3$, if x + y = 15 and xy = 25is:

- (a) 2250
- (b) 1250
- (c) 1750
- (d) 3250

Ans. (a) 2250

Explanation:

We know,

$$x^{3} + y^{3} = (x + y)(x^{2} + y^{2} - xy)$$
And
$$(x + y)^{2} = x^{2} + y^{2} + 2xy$$
Now,
$$x + y = 15$$

Squaring both sides

$$x^{2} + y^{2} + 2xy = 225$$

$$x^{2} + y^{2} = 225 - 2xy$$

$$= 225 - 2(25)$$

$$= 175$$

$$\therefore x^{3} + y^{3} = (x + y)(x^{2} + y^{2} - xy)$$

$$= 15 (175 - 25)$$

$$= 15 (150)$$

$$x^{3} + y^{3} = 2250$$

* 7. The remainder if $x^2 + px + q$ is divided by x + r

- (a) $-r^2 pr q$ (b) $r^2 + pr + q$
- (c) $r^2 pr + q$
- (d) $r^2 pr q$ [Diksha]

Ans. (c) $r^2 - pr + q$

Explanation: When we divide $x^2 + px + q$ by x + r we get $r^2 - pr + q$

- 8. Which of these is a polynomial in one variable?
 - (a) The perimeter of a square whose length of side is represented by the expression √x.
 - (b) The area of a square whose length of side is represented by the expression $1 + \sqrt{x}$.
 - (c) The area of a rectangle whose length of side is represented by the expression $2 + \sqrt{x}$ and \sqrt{x} .
 - (d) The perimeter of a rectangle whose length of side is represented by the expression $x^2 + \sqrt{x}$ and $5 - \sqrt{x}$.

CH2 POLYNOMIALS

Ans. (d) The perimeter of a rectangle whose length of side is represented by the expression

$$x^2 + \sqrt{x}$$
 and $5 - \sqrt{x}$.

Explanation: Perimeter of a rectangle is $2(l_1 + l_2)$ Where, l_1 and l_2 are the length and breadth of the rectangle respectively.

.: In option (d),

$$l_1 = x^2 + \sqrt{x}$$
 and $l_2 = 5 - \sqrt{x}$
Perimeter = $2(l_1 + l_2)$
= $2(x^2 + \sqrt{x} + 5 - \sqrt{x})$
= $2(x^2 + 5)$;

which is a polynomial in one variable.

- 9. If x + y = 14 and xy = 24, then the value of $x^{2} - xy + y^{2}$ is:
 - (a) 196
- (b) 124
- (c) -142
- (d) 72

Ans. (b) 124

Explanation:

We know,

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
 ...(i)
 $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$

And We can write,

$$x^3 + y^3 = (x + y)^3 - 3xy(x + y)$$
 ...(ii)

Now, equating equations (i) and (ii)

$$(x + y)(x^2 - xy + y^2) = (x + y)^3 - 3xy(x + y)$$

$$(x^2 - xy + y^2) = \frac{(x + y)^3 - 3xy(x + y)}{(x + y)}$$

$$= \frac{(x + y)[(x + y)^2 - 3xy]}{(x + y)}$$

$$= (x + y)^2 - 3xy$$

$$= (14)^2 - 3(24)$$

$$= 196 - 72$$

10. If
$$x + \frac{1}{x} = \sqrt{3}$$
, then the value of $x^3 + \frac{1}{x^3}$ is:

- (a) 0

= 124

- (c) 2
- (d) 3

Ans. (a) 0

Explanation:

We know,

$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

$$\left(x + \frac{1}{x}\right) = \sqrt{3}$$

Cubing both sides, we get

$$x^3 + \frac{1}{x^3} + 3\left(x \times \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 3\sqrt{3}$$
 ...(i)

Now put,
$$x + \frac{1}{x} = \sqrt{3}$$
 in equation (i)

$$x^{3} + \frac{1}{x^{3}} + 3\sqrt{3} = 3\sqrt{3}$$
$$x^{3} + \frac{1}{x^{3}} = 3\sqrt{3} - 3\sqrt{3}$$
$$x^{3} + \frac{1}{x^{3}} = 0$$

11. x + 1 is a factor of the polynomial:

(a)
$$x^3 + x^2 - x + 1$$
 (b) $x^3 + x^2 + x + 1$

(b)
$$x^3 + x^2 + x + 1$$

(c)
$$x^4 + x^3 + x^2 +$$

(c)
$$x^4 + x^3 + x^2 + 1$$
 (d) $x^4 + 3x^3 + 3x^2 + x + 1$

[NCERT Exemplar]

Ans. (b)
$$x^3 + x^2 + x + 1$$

Explanation: For x + 1 to be a factor as a polynomial, it should have remainder as zero on dividing the polynomial.

$$p(x) = x^3 + x^2 + x + 1$$

On dividing p(x) by x + 1

$$\begin{array}{c}
x+1 \overline{\smash)x^3+x^2+x+1}(x^2+1) \\
-\frac{x^3+x^2}{0+x+1} \\
-\frac{x+1}{0}
\end{array}$$

Hence, x + 1 is a factor of $x^3 + x^2 + x + 1$.

- **12.** One of the factors of $(25x^2 1) + (1 + 5x)^2$ is:
 - (a) 5 + x
- (b) 5 x
- (c) 5x 1
- (d) 10x

Ans. (d) 10x

Explanation:

Let

$$p(x) = (25x^2 - 1) + (1 + 5x)^2$$

On simplifying,

$$p(x) = 25x^{2} - 1 + (1 + 5x)^{2}$$

$$p(x) = 25x^{2} - 1 + (1 + 10x + 25x^{2})$$

$$p(x) = 25x^{2} - 1 + 1 + 10x + 25x^{2}$$

$$p(x) = 50x^{2} + 10x$$

$$p(x) = 10x(5x + 1)$$

Here, 10x and (5x + 1) are two factors of p(x). Hence, 10x is one of the factor of $(25x^2 - 1) + (1 + 5x)^2$.

- **13.** The value of 9 $36(a + b)^2$ is:
 - (a) 9(1 + 2a 2b)(1 + 2a + 2b)
 - (b) 9(1-a-2b)(1-a+2b)
 - (c) 9(1 + 2a + 2b)(1 2a + 2b)
 - (d) 9(1 + 2a + 2b)(1 2a-2b)

Ans. (d) 9(1 + 2a + 2b)(1 - 2a-2b)

Explanation: Given equation is

$$= 9 - 36(a + b)^{2}$$

$$= 9[1 - 4(a + b)^{2}]$$

$$= 9[1^{2} - (2(a + b))^{2}]$$

$$= 9[(1 + 2(a + b))[1 - 2(a + b)]$$

$$= 9(1 + 2a + 2b)(1 - 2a - 2b)$$

14. One of the zeroes of the polynomial $12x^3 - 24x^2 - 4x + 8$ is

(a)
$$-\frac{2}{\sqrt{12}}$$

[Diksha]

Ans. (a)
$$-\frac{2}{\sqrt{12}}$$

Explanation: Let $p(x) = 12x^3 - 24x^2 - 4x + 8$ Evaluate p(x) for the values given in the options

$$p\left(-\frac{2}{\sqrt{12}}\right) = 12\left(-\frac{2}{\sqrt{12}}\right)^3 - 24\left(-\frac{2}{\sqrt{12}}\right)^2$$
$$-4\left(-\frac{2}{\sqrt{12}}\right) + 8 = 0$$

$$p(-2) = 12(-2)^3 - 24(-2)^3 - 4(-2) + 8 = -176$$

$$p(1) = 12(1)^3 - 24(-2)^2 - 4(1) + 8 = -8$$

$$p(12) = 12(12)^3 - 24(12)^2 - 4(12) + 8 = 17.240$$

Only in option (a) i.e.,
$$p\left(-\frac{2}{\sqrt{12}}\right)$$
 we are getting

the volue as zero hence $-\frac{2}{\sqrt{12}}$ is one of the

zeroes of
$$12x^3 - 24x^2 - 4x + 8$$
.

15. The polynomial (x - a) is a factor of the polynomial $x^4 - 2x^2 + kx + k$, where k is a constant. Which of these is the correct relation between a and k?

(a)
$$k = \frac{a^2(2-a^2)}{a+1}$$

(b)
$$k = \frac{a^2(2+a^2)}{1+a}$$

(c)
$$k = \frac{a^2(2-a^2)}{1-a}$$

(a)
$$k = \frac{a^2(2-a^2)}{a+1}$$
 (b) $k = \frac{a^2(2+a^2)}{1+a}$ (c) $k = \frac{a^2(2-a^2)}{1-a}$ (d) $k = \frac{a^2(2-a^2)}{1-a}$

Ans. (a)
$$k = \frac{a^2(2-a^2)}{a+1}$$

Explanation:

Let,
$$p(x) = x^4 - 2x^2 + kx + k$$

If x - a is a factor of p(x), then p(a) = 0

$$(a)^4 - 2(a)^2 + ak + k = 0$$
$$a^4 - 2a^2 = -k(a+1)$$

$$-k = \frac{a^4 - 2a^2}{a+1}$$

$$k = \frac{2a^2 - a^4}{a+1}$$

$$k = \frac{a^2 (2 - a^2)}{(a+1)}$$

16. The remainder when $8x^2 - 5x + 1$ is divided by x - 2 is:

- (a) -1
- (b) 0
- (c) 21
- (d) 23

[Diksha]

Ans. (d) 23

Explanation: Let $p(x) = 8x^2 - 5x + 1$

The zero of the polynomial x - 2 is 2

$$\begin{array}{r}
8x + 11 \\
x - 2) 8x^{2} - 5x + 1 \\
8x^{2} - 16x \\
- + \\
11x + 1 \\
11x - 22 \\
- + \\
23
\end{array}$$

So, by the Remainder Theorem, 23 is the remainder when $8x^2 - 5x \div 1$ is divided by x - 2. Alternatively, we can do the long division. When we divide $8x^2 - 5x + 1$ by x - 2, we get 23 as the remainder.

Assertion and Reason (A-R)

Direction for questions 17 to 20: In question number 17 to 20, a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct option as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

17. Assertion (A): The degree of the polynomial

$$6a^2 - \frac{1}{8}a^6 + 34a^3 - \sqrt{12}$$
 a is 6.

The degree of a polynomial Reason (R): is the highest power of its variable.

Ans. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Explanation:

Given:
$$6a^2 - \frac{1}{8}a^6 + 34a^3 - \sqrt{12}a^4$$

Here, the degree of this polynomial is 6 because the degree of a polynomial is the highest power of its variable.

18. Assertion (A): The factorisation of $z^3 + 125$ is $(z + 5) (z^2 - 5z + 25).$

We know $x^3 + u^3 = (x + u)^3 - 3xu$ Reason (R): (x + y)

Ans. (c) Assertion (A) is true but reason (R) is false.

Explanation:

We know,
$$x^3 + y^3 = (x + y)(x^2 + y^2 - xy)$$

 $z^3 + (5)^3 = (z + 5)(z^2 + 25 - 5z)$

Topics and Questions which are a part of latest CBSE Syllabus but have been removed by NCERT.

19. Assertion (A): The value of $x^2 + y^2 + 4z^2 + 2xy + 4yz + 4zx$, when

(x + y) = 5 and z = 3 is 121.

Reason (R): If $x + \frac{1}{x} = 3$, then $x^2 + \frac{1}{x^2} = 7$.

Ans. (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

Explanation: We know that,

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca....(i)$$

Given, $x^2 + y^2 + 4z^2 + 2xy + 4yz + 4zx$
= $x^2 + y^2 + (2z)^2 + 2xy + 2(y)(2z) + 2(2z)(x)$
When compare with equation (i)

$$a = x$$

 $b = y$

We get,

$$(x + y + 2z)^2 = x^2 + y^2 + 4z^2 + 2xy + 4yz + 4zx$$
$$[(5 + 2(3))]^2 = x^2 + y^2 + 4z^2 + 2xy + 4yz + 4zx$$
$$x^2 + y^2 + 4z^2 + 2xy + 4xy + 4yz + 4zx = (5 + 6)^2 = 121$$

So, Assertion (A) is correct.

Now,
$$x + \frac{1}{x} = 3$$

Squaring both sides, we get

$$x^{2} + \frac{1}{x^{2}} + 2 \times x \times \frac{1}{x} = 9$$
$$x^{2} + \frac{1}{x^{2}} + 2 = 9$$

$$x^2 + \frac{1}{x^2} = 7$$

20. Assertion (A): $f(x) = 2 - x^2 + x^3$ is a cubic polynomial.

Reason (R): Every polynomial is a binomial.

Ans. (c) Assertion (A) is true but reason (R) is false.

Explanation:
$$f(x) = 2 - x^2 + x^3$$

A polynomial of degree 3 is a cubic polynomial, and here f(x) has degree 3.

A polynomial can be of any degree.

CASE BASED Questions (CBQs)

[4 & 5 marks]

Read the following passages and answer the questions that follow:

21. An object which is thrown or projected into the air, subject to only the acceleration of gravity is called a projectile and its path is called its trajectory. The curved path a projectile follows was shown by Galileo to be a parabola. Parabola is represented by a polynomial. If the polynomial to represent the distance covered is: $p(x) = -6x^2 + 48x + 24$.

- (A) What is the degree of the polynomial?
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- (B) Find the height of the projectile 5 seconds after it's launched.
 - (a) 114 m
- (b) 64 m
- (c) 170 m
- (d) 116 m
- (C) The value of K if x 3 is a factor of $K^2x^3 x^2 + 3x 1$, is:

- (a) 0
- (b) $\pm \frac{1}{3\sqrt{3}}$
- (c) $\frac{1}{\sqrt{2}}$
- (d) $\frac{1}{\sqrt{2}}$
- (D) If the polynomial to represent the distance covered is given by, $p(x) = -6x^2 + 48x + 24$, then the value of p(4) is:
 - (a) 117
- (b) -72
- (c) 120
- (d) 114
- (E) If the equation of the parabola is given by, $p(y) = 3y^2 - 2y - 4$, then the value of p(2) is:
 - (a) 8
- (b) 4
- (c) 12
- (d) 6

Ans. (A) (c) 2

Explanation: The degree of the polynomial is 2.

(B) (a) 114 m

Explanation: $p(y) = -6y^2 + 48y + 24$

To calculate height, put y = 5

Height of projectile,

$$p(5) = -6 \times (5)^{2} + 48 \times 5 + 24$$
$$= -6 \times 25 + 240 + 24$$
$$= 114$$

So, the height of projectile reaches is 114 m.

(C) (b)
$$\pm \frac{1}{3\sqrt{3}}$$

Explanation: Let $p(x) = K^2x^3 - x^2 + 3x - 1$. If (x - 3) is a factor of p(x) then p(x) = 0.

$$p(3) = K^{2}(3)^{3} - (3)^{2} + 3(3) - 1$$

$$= K^{2}(27) - 9 + 9 - 1$$

$$= 27K^{2} - 1$$

$$K^{2} = \frac{1}{27}$$

$$K^{2} = \pm \frac{1}{3\sqrt{3}}$$

(D) (c) 120

Explanation:
$$p(x) = 6x^2 + 48x + 24$$

Put $x = 4$

$$p(4) = 6(4)^2 + 48(4) + 24$$

$$= -96 + 192 + 24$$

$$= 120$$

Hence, the value of p(4) is 120.

(E) (b) 4

Explanation:
$$p(y) = 3y^2 - 2y - 4$$

 $p(2) = 3 \times (2)^2 - 2 \times 2 - 4$
 $= 3 \times 4 - 4 - 4$
 $= 12 - 8$
 $p(2) = 4$

22. Sonu's elder sister gave him some money to buy oranges from the fruit market at the rate of p(y) = y² – 5y + 6, where, α, β are the zeroes of p(y).

- (A) Find α and β where $\alpha > \beta$.
- (B) Find the value of $\alpha + \beta + \alpha\beta$ and p(5)
- (C) Find the value of $\alpha^2 \beta^2$

Ans. (A) Given polynomial
$$p(y) = y^2 - 5y + 6$$

$$p(y) = y^{2} - 3y - 2y + 6$$

$$p(y) = y(y - 3) - 2(y - 3)$$

$$p(y) = (y - 3)(y - 2)$$

$$y - 3 = 0$$

$$y = 3$$

$$y = 2$$

As according to the question $\alpha > \beta$ So, $\alpha = 3$

As according to the question $\alpha > \beta$ So, $\beta = 2$

(B) Here,
$$\alpha = 3, \beta = 2$$

 $\alpha + \beta + \alpha\beta = 3 + 2 + 3 \times 2$
 $= 11$
 $p(y) = y^2 - 5y + 6$
 $p(5) = (5)^2 - 5 \times 5 + 6$
 $= 25 - 25 + 6$
 $p(5) = 6$

(C) Here,
$$\alpha = 3$$
, $\beta = 2$
 $\alpha^2 - \beta^2 = (\alpha + \beta) (\alpha - \beta)$
 $= (3 + 2) (3 - 2)$
 $= 5$

23. Junk food is a food that contains high levels of salt, sugar, fats and lack of nutrients such as vitamins, fibre and minerals, consuming them can lead to short and long-term health complications, including weight gain. If α be the number of children who take junk food and β be the number of children who take healthy food such that $\alpha > \beta$ where α and β are the zeroes of the quadratic polynomial

$$p(y) = 2y^2 - 18y + 40$$

- (A) Find the number of students who take healthy food.
- (B) How many students take junk food?
- (C) Find the value of k, if p(0) + p(1) = k. p(2).

Ans. (A)
$$p(y) = 2y^{2} - 18y + 40$$

$$= 2y^{2} - 10y - 8y + 40$$

$$= 2y(y - 5) - 8(y - 5)$$

$$= (2y - 8)(y - 5)$$

$$2y - 8 = 0, \quad y - 5 = 0$$

$$2y = 8, \quad y = 5$$

$$y = 4$$
As $\alpha > \beta$, so $\beta = 4$

:. Number of students who take healthy food = 4

(B)
$$p(y) = 2y^2 - 18y + 40$$
$$= 2y^2 - 10y - 8y + 40$$

$$= 2y(y-5) - 8(y-5)$$

$$= (2y-8)(y-5)$$

$$2y-8=0, y-5=0$$

$$2y=8, y=5$$

$$y=5$$
As $\alpha > \beta$, So $\alpha = 5$

$$\therefore \text{ Number of students who take junk food } 5$$

$$p(y) = 2y^2 - 18y + 40$$

$$p(0) = 2(0) - 18 \times 0 + 40$$

$$p(0) = 40$$

$$= 42 - 18$$

$$= 24$$

$$p(2) = 2(2)^2 - 18(2) + 40$$

$$= 48 - 36$$

$$= 12$$

$$p(0) + p(1) = k. p(2)$$

$$40 + 24 = k.(12)$$

$$64 = k.(12)$$

$$k = \frac{64}{12}$$

VERY SHORT ANSWER Type Questions (VSA)

[1 mark]

24. If $p(x) = 2x^3 - 6x^2 + ax + a$, and (x + 2) is a factor of p(x), then find a.

 $p(1) = 2(1)^2 - 18(1) + 40$ = 2 - 18 + 40

- $p(x) = 2x^3 6x^2 + ax + a$ If (x + 2) is a factor, p(-2) = 0p(-2) = 0 $2(-2)^3 - 6(-2)^2 + a(-2) + a = 0$ 2(-8) - 6(4) - 2a + a = 0-16 - 24 - a = 0
- 25. Find the zero of polynomial in each of the
 - follwing cases: (A) p(x) = 2x + 5

(B)
$$g(x) = 3 - 6x$$

[NCERT Exemplar] p(x) = 2x + 5

Ans. (A) Given,

(C)

$$p(x) = 0$$
$$2x + 5 = 0$$
$$2x = -5$$
$$x = \frac{-5}{2}$$

(B) Given,

$$g(x) = 3 - 6x$$

$$g(x) = 0$$

$$3 - 6x = 0$$

$$x = \frac{3}{6}$$

$$x = \frac{1}{2}$$

Ans. Given, divisor is x + 1, then by remainder

theorem,
$$x + 1 = 0$$

 $x = -1$
If $p(x) = x^{111} + 111$
 $p(-1) = (-1)^{111} + 111$
 $= -1 + 111$
 $= 110$

Hence, the remainder is 110.

27. If a + b + c = 0, then find $a^3 + b^3 + c^3$.

[Diksha]

Ans. We know.

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$
Given, $a + b + c = 0$

$$\therefore a^{3} + b^{3} + c^{3} - 3abc = 0(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$a^{3} + b^{3} + c^{3} - 3abc = 0$$

$$a^{3} + b^{3} + c^{3} = 3abc$$
Hence, the value of $a^{3} + b^{3} + c^{3} = 3abc$

- 28. The volume of a cube is given by the expression $27x^3 + 8y^3 + 54x^2y + 36xy^2$. What is the expression for the length of a side of the cube?
- Ans. The volume of the cube is given by $p(x) = 27x^3 + 8y^3 + 54x^2y + 36xy^2$ We know.

volume of cube = $(side)^3$

^{*26.} If $x^{111} + 111$ is divided by x + 1, then find the remainder.

^{*} Topics and Questions which are a part of latest CBSE Syllabus but have been removed by NCERT.

So,
$$p(x) = 27^{x^3} + 8y^3 + 54x^2y + 36xy^2$$
$$p(x) = (3x)^3 + (2y)^3 + 3 \times (3x) + (2y)(3x + 2y)$$
$$p(x) = (3x + 2y)^3$$
So,
$$p(x) = (3x + 2y)^3 = (\text{Side})^3$$
Thus, the side of the cube is $(3x + 2y)$ units.

Concept applied $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$

29. Find the value of
$$x - \frac{1}{x}$$
, if $x + \frac{1}{x} = 3$.

Ans. Given: $x + \frac{1}{x} = 3$

Squaring both sides, we get

$$x^{2} + \frac{1}{x^{2}} + 2 \times x \times \frac{1}{x} = 9$$
$$x^{2} + \frac{1}{x^{2}} = 7$$

Subtract $-2 \times x \times \frac{1}{x}$ both the sides. $x^{2} + \frac{1}{x^{2}} - 2x \times \frac{1}{x} = 7 - 2 \times x \times \frac{1}{x}$ $(x - \frac{1}{x})^{2} = 5$

$$x - \frac{1}{x} = \pm \sqrt{5}$$

30. Factorise $84 - 2r - 2r^2$ [NCERT Exemplar]

Ans. Given:
$$84 - 2r - 2r^2$$

$$-2[r^2 + r - 42] = 0$$

$$\Rightarrow -2[r^2 + 7r - 6r - 42] = 0$$
[Factorising by splitting the middle term]

[Factorising by splitting the middle term] $\Rightarrow -2[r(r+7) - 6(r+7)] = 0$

$$\Rightarrow -2[r(r+7) - 6(r+7)] = 0$$

$$\Rightarrow -2[(r-6)(r+7)] = 0$$

$$\Rightarrow -2[-(6-r)(r+7)] = 0$$

$$\Rightarrow 2[(6-r)(7+r)] = 0$$

SHORT ANSWER Type-I Questions (SA-I)

[2 marks]

31. Check whether (r+1) is a factor of polynomial $(4r^3 + 4r^2 - r - 1)$.

(4r³ + 4r² - r - 1). Ans. Let, $p(r) = 4r^3 + 4r^2 - r - 1$ And q(r) = r + 1

On putting q(r) = 0, we get

r + 1 = 0r = -1

On putting r = -1 in p(r), we get

 $p(-1) = 4(-1)^3 + 4(-1)^2 - (-1) - 1$ = -4 + 4 + 1 - 1= 0

Since, p(-1) = 0

Therefore, (r + 1) is a factor of $(4r^3 + 4r^2 - r - 1)$

32. Ashima donated a certain amount of money to a blind school. Her friend Manya wanted to know the amount donated by her, but Ashima did not disclose the amount she donated, instead she gave her a hint that if \(x + \frac{1}{x} \) = ₹7 then the amount donated by

her is $\sqrt[3]{\left(x^3 + \frac{1}{x^3}\right)}$. Find the amount donated

by Ashima to the school.

[British Council 2022]

Ans. \therefore $x + \frac{1}{x} = 7$

 $\therefore \left[x + \frac{1}{x}\right]^3 = 7^3$

 $\Rightarrow \qquad x^3 + \frac{1}{x^3} + 3x \frac{1}{x} \left(x + \frac{1}{x} \right) = 343$

 $\Rightarrow \qquad x^3 + \frac{1}{x^3} + 3 \times 1 \times (7) = 343$

 $\Rightarrow x^3 + \frac{1}{x^3} + 21 = 343$

 $x^3 + \frac{1}{x^3} = 343 - 21$ = 322

Thus, the amount donated by Ashima is ₹ 322.

33. The value of the polynomial $x^2 + kx + 5$ at x = 2 is 15 where k is a constant. Find the value of the polynomial at x = 5. [NCERT Exemplar]

Ans. Let, $p(x) = x^2 + kx + 5$ Now, at x = 2 p(2) = 15[Given]

 $(2)^2 + k(2) + 5 = 15$

$$2k = 15 - 9$$

$$k = \frac{6}{2}$$

$$k = 3$$
Hence,
$$p(x) = x^2 + 3x + 5$$
Now,
$$put \ x = 5, \text{ we get}$$

$$p(5) = (5)^2 + 3(5) + 5$$

$$= 25 + 15 + 5$$

$$p(5) = 45$$

34. Find the value of k if x - 2 is a factor of $4x^3 + 3x^2 - 4x + k$. [Delhi Gov. QB 2022]

Ans.
$$x - 2$$
 is factor of $4x^3 + 3x^2 - 4x + k$
 $x - 2 = 0$
 $x = 2$
 $4(2)^3 + 3(2)^2 - 4x \times 2 + k = 0$
 $32 + 12 - 8 + k = 0$
 $44 - 8 + k = 0$
 $36 + k = 0$
 $k = -36$

35. If a + b + c = 9 and ab + bc + ca = 26, find $a^2 + b^2 + c^2$.

Ans. Given,
$$a + b + c = 9$$
 and $ab + bc + ca = 26$
 $\Rightarrow (a + b + c)^2 = (9)^2$

[:. Squaring on the both sides]

 $\Rightarrow a^2 + b^2 + c^2 + 2(ab + bc + ca) = 81$
 $\Rightarrow a^2 + b^2 + c^2 + 2(26) = 81$

[:. $ab + bc + ca = 26$]

 $\Rightarrow a^2 + b^2 + c^2 = 81 - 52$
 $\Rightarrow 29$

36. Factorise $64(x + y)^3 - 125(x - y)^3$.

Ans.
$$64(x + y)^3 - 125(x - y)^3 = [\{4(x + y)\}^3 - \{5(x - y)\}^3]$$

we know, $a^3 - b^3 = (a - b)(a^2 + b^2 + ab)$
= $\{4(x + y) - 5(x - y)\}[16(x + y)^2 + 20(x + y)(x - y) + 25(x - y)^2]$
= $(9y - x)[16(x + y)^2 + 20(x + y)(x - y) + 25(x - y)^2]$
= $(9 - x)[16x^2 + 16y^2 + 32xy + 20x^2 - 20y^2 + 25x^2 + 25y^2 - 50xy]$
= $(9y - x)(61x^2 + 21y^2 - 18xy)$

SHORT ANSWER Type-II Questions (SA-II)

[**3** marks]

37. If polynomials $4x^3 + 2ax + 6x - 10$ and $3x^3 + 3x^2 - 12x + 3a$ leave the same remainder when divided by (2x - 4), find the value of a.

Ans. Let, $p(x) = 4x^3 + 2ax + 6x - 10$ and $q(x) = 3x^3 + 3x^2 - 12x + 3a$ be the given polynomials. The remainder when divided by 2x - 4 are p(2) and q(2), respectively.

By the given condition, we have

$$p(2) = q(2)$$

$$4(2)^{3} + 2(a)(2) + 6 \times 2 - 10 = 3(2)^{3} + 3(2)^{2} - 12$$

$$\times 2 + 3a$$

$$32 + 4a + 12 - 10 = 24 + 12 - 24 + 3a$$

$$34 + 4a = 12 + 3a$$

$$34 - 12 = 3a - 4a$$

$$a = -22$$

- 38. (A) Find the value of 48³ 30³ 18³ using suitable algebraic identities.
 - (B) Factorise $(x y)^3 + (y z)^3 + (z x)^3$ using suitable algebraic identities.

Ans. (A) To find the value of $48^3 - 30^3 - 18^3$.

Since,
$$x + y + z = 0$$
,
then, $x^3 + y^3 + z^3 - 3xyz = 0$ or $x^3 + y^3 + z^3 = 3xyz$
Here, in $48^3 + (-30)^3 + (-18)^3$.

the value of sum, 48 + (-30) + (-18) = 0Therefore, $48^3 + (-30)^3 + (-18)^3$ $= 3 \times 48 \times (-30) \times (-18) = 77760$ (B) Given $(x-y)^3 + (y-z)^3 + (z-x)^3$ Since, x+y+z=0, then, $x^3 + y^3 + z^3 - 3xyz = 0$ or $x^3 + y^3 + z^3 = 3xyz$ Here, (x-y) + (y-z) + (z-x) = 0Therefore, $(x-y)^3 + (y-z)^3 + (z-x)^3$ = 3(x-y)(y-z)(z-x)

39. For the polynomial

$$\frac{x^3+2x+1}{5} - \frac{7}{2}x^2 - x^6$$
, write:

- (A) the degree of the polynomial
- (B) the coefficient of x^3
- (C) the coefficient of x^6

Ans. Here,
$$\frac{x^3 + 2x + 1}{5} - \frac{7}{2}x^2 - x^6$$

$$\Rightarrow -x^6 + \frac{1}{5}(x^3 + 2x + 1) - \frac{7}{2}x^2$$

$$\Rightarrow -x^6 + \frac{1}{5}x^3 - \frac{7}{2}x^2 + \frac{2}{5}x + \frac{1}{5}$$

- (A) The degree of the polynomial $\frac{x^3+2x+1}{5} \frac{7}{2}x^2 x^6 \text{ is 6 because the }$ maximum power of the x is 6.
- (B) The coefficient of x^3 in $-x^6 + \frac{1}{5}x^3 \frac{7}{2}x^2 + \frac{2}{5}x + \frac{1}{5}$ is $\frac{1}{5}$
- (C) The coefficient of x^6 in $-x^6 + \frac{1}{5}x^3 \frac{7}{2}x^2 + \frac{2}{5}x + \frac{1}{5}$ is -1

40. Factorise $x^{24} - y^{24}$.

Ans.
$$x^{24} - y^{24} = (x^{12})^2 - (y^{12})^2$$

 $\Rightarrow x^{24} - y^{24}$
 $\Rightarrow (x^{12} + y^{12})(x^{12} - y^{12})$
 $= [(x^4)^3 + (y^4)^3][(x^6)^2 - (y^6)^2]$
 $= x^4 + y^4)(x^8 + y^8 - x^4y^4)[(x^6 + y^6)$
 $(x^6 - y^6)]$
 $= (x^4 + y^4)(x^8 + y^8 - x^4y^4)(x^2 + y^2)$
 $[(x^2)^2 - x^2y^2 + (y^2)^2]$
 $[(x^3 + y^3)(x^3 - y^3)]$
 $= (x^4 + y^4)(x^8 + y^8 - x^4y^4)(x^2 + y^2)$
 $[(x^2)^2 - x^2y^2 + (y^2)^2][(x + y)$
 $[(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)$

41. Find the length and breadth of a rectangle, if its area is represented by the polynomial, $6x^2 - 29x + 30$ and also find the perimeter.

Ans. We know, the area of rectangle =
$$l \times b$$

As $6x^2 - 29x + 30 = Area = $l \times b$$

Use middle term splitting method

$$6x^{2} - 29x + 30 = l \times b$$

$$6x^{2} - 20x - 9x + 30 = l \times b$$

$$2x(3x - 10) - 3(3x - 10) = l \times b$$

$$(2x - 3)(3x - 10) = l \times b$$

So, we have

$$l = 2x - 3$$
 and $b = 3x - 10$
Now, perimeter = $2(l + b)$
= $2[2x - 3 + 3x - 10]$
= $2[5x - 13]$
Perimeter = $10x - 26$

42. Find the value of b.

(A)
$$81a^2 - b^2 = (9a + \frac{1}{2})(9a - \frac{1}{2})$$

(B) $x^3 - 2bx^2 + 16$ is divisible by $x + 2$.
[Delhi Gov. QB 2022]

Ans. (A) Here,
$$81a^2 - b^2 = (9a + \frac{1}{2})(9a - \frac{1}{2})$$
$$= (9a)^2 - (\frac{1}{2})^2$$

So,
$$81a^2 - b^2 = 81a^2 - \frac{1}{4}$$

On comparing both sides, we get

$$-b^2 = -\frac{1}{4}$$
$$b^2 = \frac{1}{4}$$
$$b = \pm \frac{1}{2}.$$

Therefore, the value of b is $\pm \frac{1}{2}$.

(B) Consider, $p(x) = x^3 - 2bx^2 + 16$ When p(x) is divisible by (x + 2), then remainder = 0

So
$$p(-2) = 0$$

 $(-2)^3 - 2b(-2)^2 + 16 = 0$
 $-8 - 8b + 16 = 0$
 $\Rightarrow -8b + 8 = 0$
 $\Rightarrow -8b = -8$
 $\Rightarrow b = 1$

Therefore, the value of b is 1.

43. If x - 3 and $x - \frac{1}{3}$ are both factors of $px^2 + 5x + r$, then show that p = r.

Ans. x - 3 and $x - \frac{1}{3}$ are factors of $px^2 + 5x + r$

$$\begin{array}{lll}
x = 3, x = \frac{1}{3} \\
\text{Put} & x = 3 \\
\therefore & p(3)^2 + 5 \times 3 + r = 0 \\
& 9p + 15 + r = 0 \\
& 9p + r = -15 \\
\text{Put} & x = \frac{1}{3}
\end{array}$$
...(i)

$$p\left(\frac{1}{3}\right)^2 + 5 \times \left(\frac{1}{3}\right) + r = 0$$

$$\frac{p}{9} + \frac{5}{3} + r = 0$$

$$\frac{p+15+9r}{9} = 0$$

$$p+9r = -15 \qquad ...(ii)$$

From eqs. (i) and (ii)
$$9p + r = p + 9r$$

$$9p - p = 9r - r$$

$$8p = 8r$$

$$p = r$$

44. Find the values of m and n if the polynomial $2x^3 + mx^2 + nx - 14$ has x - 1 and x - 2 as its factors. [Delhi Gov. QB 2022]

Ans.
$$x - 1$$
 and $x + 2$ are factor of $2x^3 + mx^2 + nx - 14$
 $x = 1, x = 2$
For $x = 1$,
 $2(1)^3 + m(1)^2 + n(1) - 14 = 0$
 $2 + m + n - 14 = 0$

m + n - 12 = 0

m + n = 12

$$2(2)^{3} + m(2)^{2} + n(2) - 14 = 0$$

$$16 + 4m + 2n - 14 = 0$$

$$4m + 2n + 2 = 0$$

$$4m + 2n = -2$$

$$2m + n = -1$$
Subtracting eq. (ii) from eq. (i)
$$m = -13$$
Put $m = -13$ in eqs. (i), we get
$$-13 + n = 12$$

$$n = 12 + 13 = 25$$

LONG ANSWER Type Questions (LA)

[4 & 5 marks]

- 45. $2x^3 + 4x^2 7ax 5$ and $2x^3 + ax^2 6x + 3$ are polynomials which on dividing by (x + 1) and (x 1) leaves remainders y and z, respectively, if y 3z = 16 then find a.
- **Ans.** Let, $p(x) = 2x^3 + 4x^2 7ax 5$ and $q(x) = 2x^3 + ax^2 6x + 3$ be the given polynomials. Now.

When p(x) is divided by (x + 1), remainder = y

$$y = p(-1)$$

$$y = 2(-1)^{3} + 4(-1)^{2} - 7\alpha(-1) - 5$$

$$y = -2 + 4 + 7\alpha - 5$$

$$y = -3 + 7\alpha$$

And, when q(x) is divided by (x-1), remainder = z

$$z = q(1)$$

$$z = 2(1)^{3} + a(1)^{2} - 6(1) + 3$$

$$z = 2 + a - 6 + 3$$

$$z = a - 1$$

Substituting the values of y and z, we have

$$y - 3z = 16$$

$$-3 + 7a - 3(a - 1) = 16$$

$$-3 + 7a - 3a + 3 = 16$$

$$4a = 16$$

$$a = 4$$

- 46. Two brothers Ashish and Amit wanted to start a business together. They decided to share their amount depending upon the variable expenditure. The amount of two partners is given by the expression 12x² + 11x - 15, which is the product of their individual share factors.
 - (A) Find total expenditure of Ashish and Amit when x = ₹ 100.
 - (B) Find individual share factor of Ashish and Amit in terms of x.

(C) Find the value of x if their shares are equal. [British Council 2022]

Ans. (A) Total expenditure =
$$12x^2 + 11x - 15$$

(B)
$$12x^2 + 11x - 15$$

= $12x^2 + 20x - 9x - 15$
= $4x(3x + 5) - 3(3x + 5)$
= $(3x + 5)(4x - 3)$

Share of Ashish and Amit are either (3x + 5) and (4x - 3) or (4x - 3) and (3x + 5) respectively.

(C) According to the question, if their shares are equal

$$4x - 3 = 3x + 5$$
$$4x - 3x = 5 + 3$$
$$x = 8$$

47. If 4x - 2y = 4 and $xy = \frac{6}{4}$, then find the value of $x^3 - \frac{y^3}{8}$.

Ans. Given:
$$4x - 2y = 4$$

 $2x - y = 2$
 $\Rightarrow \qquad x - \frac{y}{2} = 1$...(i)
And $xy = \frac{6}{4}$
 $xy = \frac{3}{2}$

Now we know.

$$(x-y)^3 = [(x^3-y^3) - 3xy(x-y)]$$

So, from equation (i)
Cubing both the sides,

$$\left(x - \frac{y}{2}\right)^3 = (1)^3$$

$$\left(x^3 - \frac{y^3}{8}\right) - 3\left(x \times \frac{y}{2}\right)\left(x - \frac{y}{2}\right) = 1$$

$$[x - \frac{y}{2} = 1]$$
 and $[xy = \frac{3}{2}]$

$$x^{3} - \frac{y^{3}}{8} - \left(\frac{3}{2} \times \frac{3}{2}\right)(1) = 1$$

$$x^{3} - \frac{y^{3}}{8} - \frac{9}{4} = 1$$

$$x^{3} - \frac{y^{3}}{8} = 1 + \frac{9}{4}$$

$$x^{3} - \frac{y^{3}}{8} = \frac{4+9}{4}$$

$$x^{3} - \frac{y^{3}}{8} = \frac{13}{4}$$

48. If $y^3 + ay^2 + by + 6$ is divisible by y - 2 and leaves remainder 3 when divided by y - 3, find the values of a and b.

Ans. Let

$$p(y) = y^3 + ay^2 + by + 6$$

p(y) is divisible by y - 2

Then
$$p(2) = 0$$

 $23 + a \times 2^2 + b \times 2 + 6 = 0$
 $8 + 4a + 2b + 6 = 0$
 $4a + 2b = -14$
 $2a + b = -7$...(i)

If p(y) is divided by y - 3 remainder is 3.

$$p(3) = 3$$

 $3^3 + a \times 3^2 + b \times 3 + 6 = 3$
 $9a + 3b = -30$
 $3a + b = -10$...(ii)

Subtracting eq. (i) from eq. (ii)

$$a = -3$$

Put a = -3 in eq. (i)

$$2 \times -3 + b = -7$$

$$b = -7 + 6 = -1$$

49. Factorise: $x^3 - 2x^2 - x + 2$.

[Delhi Gov. QB 2022]

Ans. We need to consider the factors of 2, which are ± 1 and ± 2 .

Let us substitute 1 in the polynomial $x^3 - 2x^2 - x + 2$, to get

$$(1)^3 - 2(1)^2 - (1) + 2 = 1 - 2 - 1 + 2 = 0$$

Thus, according to factor theorem, we can conclude that

(x - 1) is a factor of the polynomial

$$x^3 - 2x^2 - x + 2$$

Let us divide the polynomial $x^3 - 2x^2 - x + 2$ by (x - 1), to get

$$\begin{array}{r}
x^{2} - x - 2 \\
x - 1 \overline{\smash)} x^{3} - 2x^{2} - x + 2 \\
\underline{x^{3} - x^{2}} \\
- x^{2} - x \\
\underline{-x^{2} - x} \\
- x^{2} + x \\
\underline{-2x + x} \\
- 2x + x \\
\underline{-2x + x} \\
\underline{-2x + x} \\
\underline{-2x + x} \\
\underline{-2} \\
0
\end{array}$$

$$x^{3} - 2x^{2} - x + 2 = (x - 1)(x^{2} - x - 2)$$

$$= (x - 1)(x^{2} + x - 2x - 2)$$

$$= (x - 1)[x(x + 1) - 2(x + 1)]$$

$$= (x - 1)(x - 2)(x + 1)$$

Therefore, we can conclude that on factorizing the polynomial $x^3 - 2x^2 - x + 2$, we get

$$(x-1)(x-2)(x+1)$$